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Abstra
t

We introdu
e a short signature s
heme based on the Computational DiÆe-Hellman assump-

tion on 
ertain ellipti
 and hyper-ellipti
 
urves. For standard se
urity parameters, the signa-

ture length is half that of a DSA signature with a similar level of se
urity. Our short signature

s
heme is designed for systems where signatures are typed in by a human or are sent over a

low-bandwidth 
hannel. We survey a number of properties of our signature s
heme su
h as

signature aggregation and bat
h veri�
ation.

1 Introdu
tion

Short digital signatures are needed in environments with strong bandwidth 
onstraints. For ex-

ample, produ
t registration systems often ask users to key in a signature provided on a CD label.

When a human is asked to type in a digital signature, the shortest possible signature is needed.

Similarly, due to spa
e 
onstraints, short signatures are needed when one prints a bar-
oded digital

signature on a postage stamp [41, 37℄. As a third example, 
onsider lega
y proto
ols that allo
ate

a �xed short �eld for non-repudiation [1, 25℄. One would like to use the most se
ure signature that

�ts in the alloted �eld length.

The two most frequently used signatures s
hemes, RSA and DSA, produ
e relatively long sig-

natures 
ompared to the se
urity they provide. For example, when one uses a 1024-bit modulus,

RSA signatures are 1024 bits long. Similarly, when one uses a 1024-bit modulus, standard DSA

signatures are 320 bits long. Ellipti
 
urve variants of DSA, su
h as ECDSA, are also 320 bits

long [2℄. A 320-bit signature is too long to be keyed in by a human.

We propose a signature s
heme whose length is approximately 170 bits and whi
h provides

a level of se
urity similar to that of 320-bit DSA signatures. Our signature s
heme is se
ure

against existential forgery under a 
hosen-message atta
k (in the random ora
le model) assuming

the Computational DiÆe-Hellman problem (CDH) is hard on 
ertain ellipti
 
urves over a �nite

�eld. Generating a signature is a simple multipli
ation on the 
urve. Verifying the signature is done

using a bilinear pairing on the 
urve. Our signature s
heme inherently uses properties of 
urves.

Consequently, there is no equivalent of our s
heme in F

�

p

.

Constru
ting short signatures is an old problem. Several proposals show how to shorten DSA

while preserving the same level of se
urity. Na

a
he and Stern [37℄ propose a variant of DSA

where the signature length is approximately 240 bits. Mironov [35℄ suggests a DSA variant with

a similar length and gives a 
on
rete se
urity analysis of the 
onstru
tion (in the random ora
le

model). Another te
hnique proposed for redu
ing DSA signature length is signatures with message

re
overy [38, 41℄. In su
h systems one en
odes a part of the message into the signature thus

�
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shortening the total length of the message-signature pair. For long messages, one 
an then a
hieve

a DSA signature overhead of 160 bits. However, for very short messages (e.g., 64 bits) the total

length remains 320 bits. Using our signature s
heme, the signature length is always on the order

of 160 bits, however short the message. When the message is not transmitted along with the

signature, DSA signatures with message re
overy are just as long as standard DSA signatures. We

also note that Patarin et al. [40℄ 
onstru
t short signatures whose se
urity depends on the Hidden

Field Equation (HFE) problem.

Our signature s
heme uses groups where the CDH problem is hard, but the De
ision DiÆe-

Hellman problem (DDH) is easy. The �rst example of su
h groups was given in [27℄ and was

previously used in [26, 10℄. We 
all su
h groups Gap DiÆe-Hellman groups, or GDH groups for

short. We show how to 
onstru
t a signature s
heme from GDH groups; prove se
urity of the

s
heme; and show how to build GDH groups that lead to short signatures. The signature s
heme

resembles the undeniable signature s
heme of Chaum and Pederson [13℄. Our signature s
heme has

several useful properties, des
ribed in Se
tion 5. For example, signatures generated by di�erent

people on di�erent messages 
an be aggregated into a single signature [11℄. The signature also

supports standard extensions su
h as threshold signatures and blind signatures [9℄.

Notation. We use E=F

q

to denote an ellipti
 
urve y

2

= x

3

+ ax+ b with 
oeÆ
ients a; b 2 F

q

.

For r � 1, we use E(F

q

r

) to denote the group of points on E in F

q

r

. We use jE(F

q

r

)j to denote the

number of points in E(F

q

r

).

2 Gap DiÆe-Hellman groups and bilinear maps

Before presenting the signature s
heme, we �rst review a few 
on
epts related to bilinear maps and

Gap DiÆe-Hellman groups. We use the following notation:

1. G

1

and G

2

are two (multipli
ative) 
y
li
 groups of prime order p;

2. g

1

is a generator of G

1

and g

2

is a generator of G

2

;

3.  is an isomorphism from G

2

to G

1

, with  (g

2

) = g

1

; and

4. e is a bilinear map e : G

1

�G

2

! G

T

.

One 
an set G

1

= G

2

, but we allow for the more general 
ase where G

1

6= G

2

so that we 
an

take advantage of 
ertain families of non-supersingular ellipti
 
urves as des
ribed in Se
tion 4.3.

The proofs of se
urity require an eÆ
iently 
omputable isomorphism  : G

2

! G

1

. When

G

1

= G

2

and g

1

= g

2

one 
ould take  to be the identity map. When G

1

6= G

2

we will need to

des
ribe expli
itly an eÆ
iently 
omputable isomorphism  : G

2

! G

1

. The map  is essential for

se
urity. To illustrate this, we give in the next se
tion an example of a bilinear map that engenders

an inse
ure signature s
heme pre
isely be
ause  does not exist.

With this setup we obtain natural generalizations of the CDH and DDH problems:

Computational 
o-DiÆe-Hellman (
o-CDH) on (G

1

; G

2

): Given g

2

; g

a

2

2 G

2

and h 2 G

1


ompute h

a

2 G

1

.

De
ision 
o-DiÆe-Hellman (
o-DDH) on (G

1

; G

2

): Given g

2

; g

a

2

2 G

2

and h; h

b

2 G

1

output

yes if a = b and no otherwise. When the answer is yes we say that (g

2

; g

a

2

; h; h

a

) is a


o-DiÆe-Hellman tuple.

When G

1

= G

2

these problems redu
e to standard CDH and DDH.

Next we a de�ne a 
o-GDH gap group pair to be a pair of groups (G

1

; G

2

) on whi
h 
o-DDH is

easy but 
o-CDH is hard. We de�ne the advantage of an algorithm A in solving the Computational
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o-DiÆe-Hellman problem on (G

1

; G

2

) as

Adv 
o-CDH

A

def

= Pr

h

A(g

2

; g

a

2

; h) = h

a

: a

R

 Z

p

; h

R

 G

1

i

:

In other words, the probability is over the uniform random 
hoi
e of a from Z

p

and h from G

1

, and

over the 
oin tosses of A. We say that an algorithmA (t; �)-breaks Computational 
o-DiÆe-Hellman

on (G

1

; G

2

) if A runs in time at most t, and Adv 
o-CDH

A

is at least �.

De�nition 2.1. Two groups (G

1

; G

2

) are a (t; �)-Gap 
o-DiÆe-Hellman pair (
o-GDH pair) if they

satisfy the following properties:

1. The group a
tion on both G

1

and G

2

and the map  from G

2

to G

1


an be 
omputed in one

time unit.

2. The De
ision 
o-DiÆe-Hellman problem on (G

1

; G

2

) 
an be solved in one time unit.

3. No algorithm (t; �)-breaks Computational 
o-DiÆe-Hellman on (G

1

; G

2

).

When (G

1

; G

1

) is a (t; �) 
o-GDH pair we say G

1

is a (t; �)-Gap-DiÆe-Hellman group (GDH group).

Note that in the above de�nition we are normalizing time so that all the above algorithms

take one time unit, and under this normalization there is no algorithm that (t; �)-breaks CDH on

(G

1

; G

2

).

2.1 Bilinear maps

Currently, the only examples of Gap DiÆe-Hellman groups arise from bilinear maps [27℄. We brie
y

de�ne bilinear groups and show how they give GDH groups. It is possible that other 
onstru
tions

for Gap DiÆe-Hellman groups exist.

Let G

1

and G

2

be two groups as above, with an additional group G

T

su
h that jG

1

j = jG

2

j =

jG

T

j. A bilinear map is a map e : G

1

�G

2

! G

T

with the following properties:

1. Bilinear: for all u 2 G

1

; v 2 G

2

and a; b 2 Z, e(u

a

; v

b

) = e(u; v)

ab

.

2. Non-degenerate: e(g

1

; g

2

) 6= 1.

De�nition 2.2. Two order-p groups (G

1

; G

2

) are a (t; �)-bilinear group pair if they satisfy the

following properties:

1. The group a
tion on both G

1

and G

2

and the map  from G

2

to G

1


an be 
omputed in one

time unit.

2. A group G

T

of order p and a bilinear map e : G

1

� G

2

! G

T

exist, and e is 
omputable in

one time unit.

3. No algorithm (t; �)-breaks Computational 
o-DiÆe-Hellman on (G

1

; G

2

).

Joux and Nguyen [26℄ showed that an eÆ
iently-
omputable bilinear map e provides an algo-

rithm for solving the De
ision 
o-DiÆe-Hellman problem as follows: For a tuple (g

2

; g

a

2

; h; h

b

) where

h 2 G

1

we have

a = b mod p () e(h; g

a

2

) = e(h

b

; g

2

):

Consequently, if two groups (G

1

; G

2

) are a (t; �)-bilinear group pair, then they are also a (t=2; �)-


o-GDH group pair. The 
onverse is probably not true.
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3 Signature s
hemes based on Gap DiÆe-Hellman groups

We present a signature s
heme that works in any Gap 
o-DiÆe-Hellman group pair (G

1

; G

2

). We

prove se
urity of the s
heme and, in the next se
tion, show how it leads to short signatures. The

s
heme resembles the undeniable signature s
heme proposed by Chaum and Pederson [13℄. Okamoto

and Point
heval [39℄ brie
y note that gap problems 
an give rise to signature s
hemes. However,

most gap problems will not lead to short signatures.

Let (G

1

; G

2

) be (t; �) 
o-Gap DiÆe-Hellman pair where jG

1

j = jG

2

j = p. A signature � is an

element of G

1

. The signature s
heme 
omprises three algorithms, KeyGen, Sign, and Verify. It

makes use of a full-domain hash fun
tion H : f0; 1g

�

! G

1

. The se
urity analysis views H as a

random ora
le [7℄. In Se
tion 3.2 we weaken the requirement on the hash fun
tion H.

Key generation. Pi
k random x

R

 Z

p

, and 
ompute v  g

x

2

. The publi
 key is v 2 G

2

. The

se
ret key is x.

Signing. Given a se
ret key x 2 Z

p

, and a message M 2 f0; 1g

�

, Compute h H(M) 2 G

1

, and

�  h

x

. The signature is � 2 G

1

.

Veri�
ation. Given a publi
 key v 2 G

2

, a messageM 2 f0; 1g

�

, and a signature � 2 G

1

, 
ompute

h H(M) 2 G

1

and verify that (g

2

; v; h; �) is a valid 
o-DiÆe-Hellman tuple. If so, output

valid; if not, output invalid.

A signature is a single element of G

1

. To 
onstru
t short signatures, therefore, we need 
o-GDH

pairs where elements in G

1

have a short representation. We 
onstru
t su
h groups in Se
tion 4.

3.1 Se
urity

We prove the se
urity of the Signature S
heme against existential forgery under a 
hosen-message

atta
ks in the random ora
le model. Existential unforgeability under a 
hosen message atta
k [24℄

for a signature s
heme (KeyGen, Sign, and Verify) is de�ned using the following game between a


hallenger and an adversary A:

Setup. The 
hallenger runs algorithm KeyGen to obtain a publi
 key PK and private key SK.

The adversary A is given PK.

Queries. Pro
eeding adaptively, A requests signatures with PK on at most q

S

messages of

his 
hoi
eM

1

; : : : ;M

q

s

2 f0; 1g

�

. The 
hallenger responds to ea
h query with a signature

�

i

= Sign(SK;M

i

).

Output. Eventually, A outputs a pair (M;�) and wins the game if (1) M is not any of

M

1

; : : : ;M

q

s

, and (2) Verify(PK;M; �) = valid.

We de�ne Adv Sig

A

to be the probability that A wins in the above game, taken over the 
oin tosses

of KeyGen and of A.

De�nition 3.1. A forger A (t; q

S

; q

H

; �)-breaks a signature s
heme if A runs in time at most t; A

makes at most q

S

signature queries and at most q

H

queries to the hash fun
tion; and Adv Sig

A

is

at least �. A signature s
heme is (t; q

S

; q

H

; �)-existentially unforgeable under an adaptive 
hosen-

message atta
k if no forger (t; q

S

; q

H

; �)-breaks it.

The following theorem shows that the signature s
heme is se
ure.
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Theorem 3.2. Let (G

1

; G

2

) be a (t

0

; �

0

)-
o-GDH group pair of order p. Then the signature s
heme

on (G

1

; G

2

) is (t; q

S

; q

H

; �)-se
ure against existential forgery under an adaptive 
hosen-message

atta
k (in the random ora
le model) for all t and � satisfying

� � e(q

S

+ 1) � �

0

and t � t

0

� 


G

1

(q

H

+ 2q

S

);

and 


G

1

is a 
onstant that depends on G

1

. Here e is the base of the natural logarithm.

Hen
e, se
urity of the signature s
heme follows from the hardness of 
o-CDH on (G

1

; G

2

). When

G

1

= G

2

se
urity is based on the standard Computational DiÆe-Hellman assumption in G

1

.

Proof of Theorem 3.2. Suppose A is a forger algorithm that (t; q

S

; q

H

; �)-breaks the signature

s
heme. We show how to 
onstru
t a t

0

-time algorithm B that solves 
o-CDH in (G

1

; G

2

) with

probability at least �

0

. This will 
ontradi
t the fa
t that (G

1

; G

2

) are a (t

0

; �

0

)-
o-GDH group pair.

Let g

2

be a generator of G

2

. Algorithm B is given g

2

; u 2 G

2

and h 2 G

1

, where u = g

a

2

. Its

goal is to output h

a

2 G

1

. Algorithm B simulates the 
hallenger and intera
ts with forger A as

follows.

Setup. Algorithm B starts by giving A the generator g

2

and the publi
 key u � g

r

2

2 G

2

, where r

is random in Z

p

.

H-queries. At any time algorithm A 
an query the random ora
le H. To respond to these queries

algorithm B maintains a list of tuples hM

j

; w

j

; b

j

; 


j

i as explained below. We refer to this list

as the H-list. The list is initially empty. When A queries the ora
le H at a pointM

i

2 f0; 1g

�

,

algorithm B responds as follows:

1. If the query M

i

already appears on the H-list in a tuple hM

i

; w

i

; b

i

; 


i

i then algorithm B

responds with H(M

i

) = w

i

2 G

1

.

2. Otherwise, B generates a random 
oin 


i

2 f0; 1g so that Pr[


i

= 0℄ = 1=(q

S

+ 1).

3. Algorithm B pi
ks a random b

i

2 Z

p

.

If 


i

= 0, B 
omputes w

i

 h �  (g

2

)

b

i

2 G

1

. If 


i

= 1, B 
omputes w

i

  (g

2

)

b

i

2 G

1

.

4. Algorithm B adds the tuple hM

i

; w

i

; b

i

; 


i

i to the H-list and responds to A by setting

H(M

i

) = w

i

.

Note that either way w

i

is uniform in G

1

and is independent of A's 
urrent view as required.

Signature queries. LetM

i

be a signature query issued by A. Algorithm B responds to this query

as follows:

1. Algorithm B runs the above algorithm for responding to H-queries to obtain a w

i

2 G

1

su
h that H(M

i

) = w

i

. Let hM

i

; w

i

; b

i

; 


i

i be the 
orresponding tuple on the H-list. If




i

= 0 then B reports failure and terminates.

2. We know 


i

= 1 and hen
e w

i

=  (g

2

)

b

i

2 G

1

. De�ne �

i

=  (u)

b

i

�  (g

2

)

rb

i

2 G

1

.

Observe that �

i

= w

a+r

i

and therefore �

i

is a valid signature on M

i

under the publi
 key

u � g

r

2

= g

a+r

2

. Algorithm B gives �

i

to algorithm A.

Output. Eventually algorithm A produ
es a message-signature pair (M

f

; �

f

) su
h that no signa-

ture query was issued forM

f

. If there is no tuple on the H-list 
ontainingM

f

then B issues a

query itself for H(M

f

) to ensure that su
h a tuple exists. We assume �

f

is a valid signature on

M

f

under the given publi
 key; if it is not, B reports failure and terminates. Next, algorithm B

�nds the tuple hM

f

; w; b; 
i on the H-list. If 
 = 1 then B reports failure and terminates.

Otherwise, 
 = 0 and therefore H(M

f

) = w = h � (g

2

)

b

. Hen
e, � = h

a+r

� (g

2

)

b(a+r)

. Then

B outputs the required h

a

as h

a

 �=(h

r

�  (u)

b

�  (g

2

)

rb

).
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This 
ompletes the des
ription of algorithm B. It remains to show that B solves the given instan
e

of the 
o-CDH problem in (G

1

; G

2

) with probability at least �

0

. To do so, we analyze the three

events needed for B to su

eed:

E

1

: B does not abort as a result of any of A's signature queries.

E

2

: A generates a valid message-signature forgery (M

f

; �

f

).

E

3

: Event E

2

and 
 = 0 for the tuple 
ontaining M

f

on the H-list.

B su

eeds if all of these events happen. The probability Pr[E

1

^ E

3

℄ de
omposes as

Pr[E

1

^ E

3

℄ = Pr[E

1

℄ � Pr[E

2

j E

1

℄ � Pr[E

3

j E

1

^ E

2

℄: (1)

The following 
laims give a lower bound for ea
h of these terms.

Claim 1: The probability that algorithm B does not abort as a result of A's signature queries is

at least 1=e. Hen
e, Pr[E

1

℄ � 1=e.

Proof. Without loss of generality we assume that A does not ask for the signature of the same

message twi
e. We prove by indu
tion that after A makes i signature queries the probability

that B does not abort is at least (1 � 1=(q

S

+ 1))

i

. The 
laim is trivially true for i = 0. Let M

i

be A's i'th signature query and let hM

i

; w

i

; b

i

; 


i

i be the 
orresponding tuple on the H-list. Then

prior to issuing the query, the bit 


i

is independent of A's view|the only value that 
ould be given

to A that depends on 


i

is H(M

i

), but the distribution on H(M

i

) is the same whether 


i

= 0 or




i

= 1. Therefore, the probability that this query 
auses B to abort is at most 1=(q

S

+ 1). Using

the indu
tive hypothesis and the independen
e of 


i

, the probability that B does not abort after

this query is at least (1 � 1=(q

S

+ 1))

i

. This proves the indu
tive 
laim. Sin
e A makes at most

q

S

signature queries the probability that B does not abort as a result of all signature queries is at

least (1� 1=(q

S

+ 1))

q

S

� 1=e.

Claim 2: If algorithm B does not abort as a result of A's signature queries then algorithm A's

view is identi
al to its view in the real atta
k. Hen
e, Pr[E

2

j E

1

℄ � �.

Proof. The publi
 key given to A is from the same distribution as a publi
 key produ
ed by

algorithmKeyGen. Responses to H-queries are as in the real atta
k sin
e ea
h response is uniformly

and independently distributed in G

1

. All responses to signature queries are valid. Therefore, A

will produ
e a valid message-signature pair with probability at least �. Hen
e, Pr[E

2

j E

1

℄ � �.

Claim 3: The probability that algorithm B does not abort after A outputs a valid forgery is at

least 1=(q

S

+ 1). Hen
e, Pr[E

3

j E

1

^ E

2

℄ � 1=(q

S

+ 1).

Proof. Given that events E

1

and E

2

happened, algorithm B will abort only if A generates a forgery

(M

f

; �

f

) for whi
h the tuple hM

f

; w; b; 
i on the H-list has 
 = 1. At the time A generates its

output it knows the value of 


i

for thoseM

i

for whi
h it issued a signature query. All the remaining




i

's are independent of A's view. Indeed, if A did not issue a signature query for M

i

then the

only value given to A that depends on 


i

is H(M

i

), but the distribution on H(M

i

) is the same

whether 


i

= 0 or 


i

= 1. Sin
e A 
ould not have issued a signature query for M

f

we know that 


is independent of A's 
urrent view and therefore Pr[
 = 0 j E

1

^ E

2

℄ � 1=(q

S

+ 1) as required.

Using the bounds from the 
laims above in equation (1) shows that B produ
es the 
orre
t

answer with probability at least �=e(q

S

+ 1) � �

0

as required. Algorithm B's running time is the

same as A's running time plus the time is takes to respond to (q

H

+q

S

) hash queries and q

S

signature

6



queries. Ea
h query requires an exponentiation in G

1

whi
h we assume takes time 


G

1

. Hen
e, the

total running time is at most t + 


G

1

(q

H

+ 2q

S

) � t

0

as required. This 
ompletes the proof of

Theorem 3.2.

The analysis used in the proof of Theorem 3.2 resembles Coron's analysis of the Full Domain

Hash (FDH) signature s
heme [15℄. We note that Probabilisit
 Full Domain Hash (PFDH) sig-

natures [16℄ have a tighter se
urity redu
tion than FDH signatures. The same improvement to

the se
urity redu
tion 
an be applied to our signature s
heme. However, randomizing our signa-

ture s
heme as in PFDH would in
rease the length of the signature, defeating our main goal of


onstru
ting short signatures.

The ne
essity of  : G

2

! G

1

. Re
all that the proof of se
urity relied on the existen
e of an

eÆ
iently 
omputable isomorphism  : G

2

! G

1

. To show the ne
essity of  we give an example of

a bilinear map e : G

1

�G

2

! G

T

for whi
h the 
o-CDH problem is believed to be hard on (G

1

; G

2

)

and yet the resulting signature s
heme is inse
ure.

Let q be a prime and let G

2

be a subgroup of Z

�

q

of prime order p with generator g. Let G

1

be the group G

1

= f0; 1; : : : ; p � 1g with addition modulo p. De�ne the map e : G

1

� G

2

! G

2

as e(x; y) = y

x

. The map is 
learly bilinear sin
e e(ax; y

b

) = e(x; y)

ab

. The 
o-CDH problem on

(G

1

; G

2

) is as follows: Given g; g

a

2 G

2

and x 2 G

1


ompute ax 2 G

1

. The problem is believed to

be hard sin
e an algorithm for 
omputing 
o-CDH on (G

1

; G

2

) gives an algorithm for 
omputing

dis
rete log in G

2

. Hen
e, (G

1

; G

2

) satis�es all the 
onditions of Theorem 3.2 ex
ept that there is

no known 
omputable isomorphism  : G

2

! G

1

. It is is easy to see that the resulting signature

s
heme from this bilinear map is inse
ure: Given one message-signature pair, it is easy to re
over

the se
ret key.

We 
omment that one 
an avoid using  at the 
ost of making a stronger 
omplexity assumption.

Without  the ne
essary assumption for proving se
urity is that no polynomial time algorithm 
an


ompute h

a

2 G

1

given g

2

; g

a

2

2 G

2

and g

1

; g

a

1

; h 2 G

1

. Sin
e  naturally exists in all the group

pairs (G

1

; G

2

) we are 
onsidering, there is no reason to rely on this stronger 
omplexity assumption.

3.2 Hashing onto ellipti
 
urves

The signature s
heme needs a hash fun
tion H : f0; 1g

�

! G

1

. In the next se
tion we use ellipti



urves to 
onstru
t 
o-GDH groups and therefore we need a hash fun
tion H : f0; 1g

�

! G

1

where

G

1

is a subgroup of an ellipti
 
urve. Sin
e it is diÆ
ult to build hash fun
tions that hash dire
tly

onto a subgroup of an ellipti
 
urve we slightly relax the hashing requirement.

Let E=F

q

be an ellipti
 
urve de�ned by y

2

= f(x) and let E(F

q

) have order m. Let P 2 E(F

q

)

be a point of prime order p. We wish to hash onto the subgroup G

1

= hP i. Suppose we are given

a hash fun
tion H

0

: f0; 1g

�

! F

q

� f0; 1g. Su
h hash fun
tions H

0


an be built from standard


ryptographi
 hash fun
tions. The se
urity analysis will view H

0

as a random ora
le. We use the

following deterministi
 algorithm 
alled MapToGroup to hash messages in f0; 1g

�

onto G

1

. Fix a

small parameter I = dlog

2

log

2

(1=Æ)e, where Æ is some desired bound on the failure probability.

MapToGroup

H

0

: The algorithm de�nes H : f0; 1g

�

! G

1

as follows:

1. Given M 2 f0; 1g

�

, set i 0;

2. Set (x; b) H

0

(i kM) 2 F

q

� f0; 1g, where i is represented as an I-bit string;

3. If f(x) is a quadrati
 residue in F

q

then do:

3a. Let y

0

; y

1

2 F

q

be the two square roots of f(x). We use b 2 f0; 1g to 
hoose between these

roots. Choose some full ordering of F

q

and ensure that y

1

is greater than y

0

a

ording

7



to this ordering (swapping y

0

and y

1

if ne
essary). Set

~

P

M

2 E(F

q

) to be the point

~

P

M

= (x; y

b

).

3b. Compute P

M

= (m=p)

~

P

M

. Then P

M

is in G

1

. Output MapToGroup

H

0

(M) = P

M

and

stop.

4. Otherwise, in
rement i, and go to Step 2; if i rea
hes 2

I

, report failure.

The failure probability 
an be made arbitrarily small by pi
king an appropriately large I. For

ea
h i, the probability that H

0

(i k M) leads to a point on G is approximately 1=2 (where the

probability is over the 
hoi
e of the random ora
le H

0

). Hen
e, the expe
ted number of 
alls to

H

0

is approximately 2, and the probability that a given message M will be found unhashable is

1=2

(2

I

)

� Æ.

Lemma 3.3. Let E=F

q

be an ellipti
 
urve and let E(F

q

) have order m. Let G

1

be a subgroup

of E(F

q

) of order p. We assume p

2

does not divide m. Suppose the 
o-GDH signature s
heme is

(t; q

S

; q

H

; �)-se
ure in the groups (G

1

; G

2

) when a random hash fun
tion H : f0; 1g

�

! G

1

is used.

Then it is (t�2

I




G

1

q

H

; q

S

; q

H

; �)-se
ure when the hash fun
tion H is 
omputed with MapToGroup

H

0

and H

0

is a random hash fun
tion H

0

: f0; 1g

�

! F

q

� f0; 1g.

Proof Sket
h. Suppose a forger algorithm F

0

(t; q

S

; q

H

; �)-breaks the signature s
heme on (G

1

; G

2

)

when the hash fun
tion H is 
omputed using MapToGroup

H

0

. We build an algorithm F that

(t+ 2

I




G

1

q

H

; q

S

; q

H

; �)-breaks the signature s
heme when H is a random ora
le H : f0; 1g

�

! G

1

.

Our new forger F will run F

0

as a bla
k box. Algorithm F passes signatures queries made by

F

0

to its own signature ora
le. F uses its hash ora
le H : f0; 1g

�

! G

1

to simulate for F

0

the

behavior of MapToGroup

H

0

. It uses an array s

ij

, whose entries are elements of F

q

� f0; 1g. The

array has q

H

rows and 2

I


olumns. On initialization, F �lls s

ij

with uniformly-sele
ted elements of

F

q

� f0; 1g.

F then runs F

0

, and keeps tra
k (and indexes) all the unique messagesM

i

for whi
h F

0

requests

an H

0

hash. When F

0

asks for an H

0

hash of a message w k M

i

whose M

i

the forger F had not

previously seen (and whose w is an arbitrary I-bit string), F s
ans the row s

ij

, 0 � j < 2

I

. For

ea
h (x; b) = s

ij

, F follows Step 3 of MapToGroup, above, seeking points in G. For the smallest j

for whi
h s

ij

maps into G

1

, F repla
es s

ij

with a di�erent point (x

i

; b

i

) de�ned as follows. Let

Q

i

= H(M

i

) 2 G

1

. Then F 
onstru
ts a random point

~

Q

i

2 E(F

q

) satisfying (m=p)

~

Q

i

= Q

i

as

follows:

1. Let w = (m=p)

�1

mod p. Note that m=p is integer sin
e p divides m. Furthermore, m=p has

an inverse modulo p sin
e p

2

does not divide m and hen
e m=p is relatively prime to p.

2. Pi
k a random point T

i

2 E(F

q

).

3. Set

~

Q

i

= (x

i

; y

i

) = pT

i

+wQ

i

.

Then

~

Q

i

is a random point in E(F

q

) su
h that (m=p)

~

Q

i

= Q

i

. F sets s

ij

= (x

i

; b

i

) where b

i

2 f0; 1g

is set so that (x

i

; b

i

) maps to

~

Q

i

in Step 3a of MapToGroup. Then MapToGroup

H

0

(M

i

) = H(M

i

)

as required.

On
e this preliminary pat
hing has been 
ompleted, F is able to answer H

0

hash queries by

F

0

for strings w k M

i

by simply returning s

iw

. The simulated H

0

whi
h F

0

sees is statisti
ally

indistinguishable from that in the real atta
k. Thus, if F

0

su

eeds in breaking the signature

s
heme using MapToGroup

H

0

then F , in running F

0

while 
onsulting H, su

eeds with the same

likelihood, and su�ers only a running-time penalty from maintaining the additional information

and running the exponentiation in Step 3 of the MapToGroup algorithm. We again assume that

exponentiation in G

1

takes time 


G

1

.
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4 Building 
o-GDH groups with small representations

Using the Weil [29, pp. 243{245℄ and Tate [18℄ pairings, we obtain 
o-GDH groups from 
ertain

ellipti
 
urves. We re
all some ne
essary fa
ts about ellipti
 
urves (see, e.g., [29, 44℄), and then

show how to use 
ertain 
urves for short signatures.

4.1 Ellipti
 
urves and the Weil pairing

Our goal is to 
onstru
t bilinear groups (G

1

; G

2

) whi
h lead to 
o-GDH groups as dis
ussed in

Se
tion 2.1. Let E=F

q

be an ellipti
 
urve. We �rst de�ne a useful 
onstant 
alled the se
urity

multiplier of a subgroup hP i � E(F

q

).

De�nition 4.1. Let q be a prime power, and E=F

q

an ellipti
 
urve with m points in E(F

q

). Let

P in E(F

q

) be a point of prime order p where p

2

- m. We say that the subgroup hP i has a se
urity

multiplier �, for some integer � > 0, if the order of q in F

�

p

is �. In other words:

p j q

�

� 1 and p - q

k

� 1 for all k = 1; 2; : : : ; �� 1:

The se
urity multiplier of E(F

q

) is the se
urity multiplier of the largest prime order subgroup in

E(F

q

).

We des
ribe two families of 
urves that provide � = 6. For standard se
urity parameters this is

suÆ
ient for obtaining short signatures. It is an open problem to build useful ellipti
 
urves with

slightly higher �, say � = 10 (see Se
tion 4.5).

Our �rst step is to de�ne G

1

and G

2

. We will then des
ribe a bilinear map e : G

1

�G

2

! G

T

,

des
ribe an isomorphism  : G

2

! G

1

, and dis
uss the intra
tability of 
o-CDH on (G

1

; G

2

).

Balasubramanian-Koblitz. Let E=F

q

be an ellipti
 
urve and let P 2 E(F

q

) be a point of

prime order p with p 6= q. Suppose the subgroup hP i has se
urity multiplier � > 1, i.e. p - q � 1.

Then, a useful result of Balasubramanian and Koblitz [3℄ shows that E(F

q

�

) 
ontains a point Q of

order p that is linearly independent of P . We set G

1

= hP i and G

2

= hQi. Then jG

1

j = jG

2

j = p.

Note that G

1

� E(F

q

) and G

2

� E(F

q

�

).

The Weil and Tate pairings. Let E[p℄ be the group of points of order dividing p in E(F

q

�

).

Then the group E[p℄ is isomorphi
 to Z

p

� Z

p

[44℄ and also G

1

; G

2

� E[p℄. The Weil pairing is a

map e : E[p℄�E[p℄! F

�

q

�

with the following properties:

1. Identity: for all R 2 E[p℄, e(R;R) = 1.

2. Bilinear: for all R

1

; R

2

2 E[p℄ and a; b 2 Z we have e(aR

1

; bR

2

) = e(R

1

; R

2

)

ab

.

3. Non-degenerate: if for R 2 E[p℄ we have e(R;R

0

) = 1 for all R

0

2 E[p℄, then R = O.

4. Computable: for all R

1

; R

2

2 E[p℄, the pairing e(R

1

; R

2

) is 
omputable in polynomial

time [34℄.

Note that e(R

1

; R

2

) = 1 if and only if R

1

and R

2

are linearly dependent. See [31, 10℄ for a de�nition

of the Weil pairing and a des
ription of the algorithm for 
omputing it. The Tate pairing [18℄ is

another useful bilinear map on E[p℄. It has properties similar to those of the Weil pairing, but does

not ne
essarily satisfy Property 1 (identity).

The Weil pairing on the 
urve E gives a 
omputable, non-degenerate bilinear map e : G

1

�G

2

!

F

�

q

�

whi
h enables us to solve the De
ision 
o-DiÆe-Hellman problem on the groups (G

1

; G

2

). When

the Tate pairing is non-degenerate on G

1

�G

2

it 
an also be used to solve De
ision 
o-DiÆe-Hellman

on (G

1

; G

2

).
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The tra
e map. We present a 
omputable isomorphism  : G

2

! G

1

, using the tra
e map, tr,

whi
h sends points in E(F

q

�

) to E(F

q

). Let �

1

; : : : ; �

�

be the Galois maps of F

q

�

over F

q

. Also,

for R = (x; y) 2 E(F

q

�

) de�ne �

i

(R) = (�

i

(x); �

i

(y)). Then the tra
e map tr : E(F

q

�

) ! E(F

q

) is

de�ned by:

tr(R) = �

1

(R) + : : :+ �

�

(R):

Fa
t 4.2. Let P 2 E(F

q

) be a point of prime order p 6= q and let hP i have se
urity multiplier

� > 1. Let Q 2 E(F

q

�

) be a point of order p that is linearly independent of P . If tr(Q) 6= O then

tr is an isomorphism from hQi to hP i.

Proof. Suppose R 2 E(F

q

) is a point of order p. If R is not in hP i then P and R generate E[p℄

and therefore E[p℄ � E(F

q

). It follows that e(P;R) 2 F

�

q

has order p sin
e otherwise e would be

degenerate on E[p℄. But sin
e � > 1 we know that p does not divide q � 1 and 
onsequently there

are no elements of order p in F

�

q

. Hen
e, we must have R 2 hP i. It follows that all the points in

E(F

q

) of order p are 
ontained in hP i. Sin
e tr(Q) 6= O, we know that tr(Q) 2 E(F

q

) has order p

and therefore tr(Q) 2 hP i. Hen
e, tr is an isomorphism from hQi to hP i.

Hen
e, when tr(Q) 6= O, the tra
e map is an isomorphism from G

2

to G

1

and is 
omputable in

polynomial time in � and log q as required.

Intra
tability of 
o-CDH on (G

1

; G

2

). The remaining question is the diÆ
ulty of the 
o-CDH

problem on (G

1

; G

2

). we review ne
essary 
onditions for CDH intra
tability. The best known

algorithm for solving 
o-CDH on (G

1

; G

2

) is to 
ompute dis
rete-log in G

1

. In fa
t, the dis
rete-log

and CDH problems in G

1

are known to be 
omputationally equivalent given some extra information

about the group G

1

[30℄. Therefore, it suÆ
es to 
onsider ne
essary 
onditions for making the

dis
rete-log problem on E(F

q

) intra
table.

Let hP i be a subgroup of E(F

q

) of order p with se
urity multiplier �. We brie
y dis
uss two

standard ways for 
omputing dis
rete-log in hP i.

1. MOV: Use an eÆ
iently 
omputable homomorphism, as in the MOV redu
tion [32℄, to map

the dis
rete log problem in hP i to a dis
rete log problem in some extension of F

q

, say F

q

i
. We

then solve the dis
rete log problem in F

�

q

i

using the Number Field Sieve algorithm [43℄. The

image of hP i under this homomorphism must be a subgroup of F

�

q

i

of order p. Thus we have

pj(q

i

� 1), whi
h by the de�nition of � implies that i � �. Hen
e, the MOV method 
an, at

best, redu
e the dis
rete log problem in hP i to a dis
rete log problem in a subgroup of F

�

q

�

.

Therefore, to ensure that dis
rete log is hard in hP i we want 
urves where � is suÆ
iently

large to make dis
rete log in F

�

q

�

intra
table.

2. Generi
: Generi
 dis
rete log algorithms su
h as Baby-Step-Giant-Step and Pollard's Rho

method [33℄ have a running time proportional to

p

p. Therefore, we must ensure that p

is suÆ
iently large.

In summary, we want 
urves E=F

q

where both a generi
 dis
rete log algorithm in E(F

q

) and

the Number Field Sieve in F

�

q

�

are intra
table.

4.2 Co-GDH signatures from ellipti
 
urves

We summarize the 
onstru
tion for 
o-GDH groups and adapt the signature s
heme to use a group

of points on an ellipti
 
urve.

The 
o-GDH groups (G

1

; G

2

) we use are de�ned as follows:
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1. Let E=F

q

be an ellipti
 
urve and let P 2 E(F

q

) be a point of prime order p where (1) p 6= q,

(2) p - q � 1, and (3) p

2

does not divide jE(F

q

)j.

2. Let � > 1 be the se
urity multiplier of hP i. By Balasubramanian and Koblitz [3℄ there exists

a point Q 2 E(F

q

�

) that is linearly independent of P . It is easy to 
onstru
t su
h a Q in

expe
ted polynomial time on
e the number of points in E(F

q

�

) is known. Sin
e � > 1 we

know that Q 62 E(F

q

). We ensure that tr(Q) 6= O. If tr(Q) = O repla
e Q by Q+ P . Then

Q+ P is of order p, it is linearly independent of P , and tr(Q+ P ) 6= O sin
e tr(P ) 6= O.

3. Set G

1

= hP i and G

2

= hQi.

4. Sin
e P and Q are linearly independent, the Weil pairing gives a non-degenerate bilinear map

e : G

1

� G

2

! F

�

q

�

. It 
an be 
omputed in polynomial time in � and log q. When the Tate

pairing is non-degenerate on G

1

�G

2

it 
an also be used as a bilinear map.

5. Sin
e tr(Q) 6= O the tra
e map on E(F

q

�

) is an isomorphism from G

2

to G

1


omputable in

polynomial time in � and log q.

With these subgroups G

1

; G

2

of the ellipti
 
urve E=F

q

the signature s
heme works as follows.

Re
all that MapToGroup

H

0

is a hash fun
tion MapToGroup

H

0

: f0; 1g

�

! G

1

built from a hash

fun
tion H

0

: f0; 1g

�

! F

�

q

� f0; 1g as des
ribed in Se
tion 3.2.

Key generation Pi
k random x

R

 Z

p

, and 
ompute V  xQ. The publi
 key is V 2 E(F

q

�

).

The se
ret key is x.

Signing Given a se
ret key x 2 Z

p

, and a message M 2 f0; 1g

�

, do:

1. Compute R MapToGroup

H

0

(M) 2 G

1

,

2. �  xR 2 E(F

q

), and

3. output the x-
oordinate of � as the signature s on M . Then s 2 F

q

.

Veri�
ation Given a publi
 key V 2 G

2

, a message M 2 f0; 1g

�

, and a signature s 2 F

q

do:

1. Find a y 2 F

q

su
h that � = (s; y) is a point of order p in E(F

q

). If no su
h y exists,

output invalid and stop.

2. Compute R MapToGroup

H

0

(M) 2 G

1

,

3. Test if either e(�;Q) = e(R;V ) or e(�;Q)

�1

= e(R;V ).

If so, output valid; Otherwise, output invalid.

The signature length is dlog

2

qe. Note that during veri�
ation we a

ept the signature if

e(�;Q)

�1

= e(R;V ). This is to a

ount for the fa
t that the signature s 2 F

q


ould have 
ome

from either the point � or �� in E(F

q

).

Se
urity. By Theorem 3.2 it suÆ
es to study the diÆ
ulty of 
o-CDH on (G

1

; G

2

). The best

known algorithm for solving the 
o-CDH problem on (G

1

; G

2

) requires the 
omputation of a dis
rete

log in G

1

or the 
omputation of a dis
rete log in F

�

q

�

.

4.3 Using non-supersingular 
urves over �elds of high 
hara
teristi


It remains to build ellipti
 
urves with the desired se
urity multiplier �. In the next two se
tions we

show 
urves with se
urity multiplier, � = 6. We begin by des
ribing a family of non-supersingular

ellipti
 
urves with � = 6. This family is outlined by Miyaji et al. [36℄. We 
all these MNT 
urves.

The idea is as follows: Suppose q = (2`)

2

+ 1 and p = (2`)

2

� 2` + 1 for some ` 2 Z. Then it


an be veri�ed that p divides q

6

� 1, but does not divide q

i

� 1 for 0 < i < 6. So, when p is prime,

a 
urve E=F

q

with p points is likely to have se
urity multiplier � = 6.

11



Dis
riminant Signature Size DLog Se
urity MOV Se
urity

D dlog

2

qe dlog

2

pe d6 log

2

qe

13368643 149 149 894

254691883 150 147 900

8911723 157 157 942

62003 159 158 954

12574563 161 161 966

1807467 163 163 978

6785843 168 166 1008

28894627 177 177 1062

153855691 185 181 1110

658779 199 194 1194

1060147 203 203 1218

20902979 204 204 1224

9877443 206 206 1236

Table 1: Non-supersingular ellipti
 
urves for 
o-GDH Signatures. E is a 
urve over the prime �eld

F

q

and p is the largest prime dividing its order. The MOV redu
tion maps the 
urve onto the �eld

F

q

6
. D is the dis
riminant of the 
omplex multipli
ation �eld of E=F

q

.

To buildE=F

q

with p points as above we use 
omplex multipli
ation [8, 
hapter VIII℄. We brie
y

explain how to do so. Suppose we had integers y; t and another positive integer D = 3 mod 4 su
h

that

q = (t

2

+Dy

2

)=4 (2)

is an integer prime. Then the 
omplex multipli
ation method will produ
e an ellipti
 
urve E=F

q

with q + 1� t points in time O(D

2

(log q)

3

). The value t is 
alled the tra
e of the 
urve.

We want a 
urve over F

q

with p points where q = (2`)

2

+ 1 and p = (2`)

2

� 2`+ 1. Therefore,

t = q + 1� p = 2`+ 1. Plugging these values into (2) we get 4((2`)

2

+ 1) = (2`+ 1)

2

+Dy

2

whi
h

leads to:

(6`� 1)

2

� 3Dy

2

= �8: (3)

For a �xed D = 3 mod 4, we need integers `; y satisfying the equation above su
h that q = (2`)

2

+1

is prime and p = (2`)

2

� 2`+ 1 is prime (or is a small multiple of a prime). For any su
h solution

we 
an verify that we get a 
urve E(F

q

) with se
urity multiplier � = 6. Finding integer solutions

`; y to an equation of type (3) is done by redu
ing it to Pell's equation, whose solution is well

known [45℄.

Table 1 gives some values of D that lead to suitable 
urves for our signature s
heme. For

example, we get a 
urve E=F

q

where q is a 168-bit prime. Signatures using this 
urve are 168-bits

while the best algorithm for 
o-CDH on E(F

q

) requires either (1) a generi
 dis
rete log algorithm

taking time approximately 2

83

, or (2) a dis
rete log in a 1008-bit �nite �eld of large 
hara
teristi
.

4.4 A spe
ial supersingular 
urve

Another method for building 
urves with se
urity multiplier � = 6 is to use a spe
ial supersingular


urve E=F

3

. Spe
i�
ally, we use the 
urve E : y

2

= x

3

+2x� 1 over F

3

. The MOV redu
tion maps

12



the dis
rete log problem in E(F

3

`

) to F

�

3

6`

. We use two simple lemmas to des
ribe the behavior of

these 
urves. (See also [47, 28℄.)

Lemma 4.3. The 
urve E

+

de�ned by y

2

= x

3

+ 2x+ 1 over F

3

satis�es

jE

+

(F

3

`

)j =

(

3

`

+ 1 +

p

3 � 3

`

when ` = �1 mod 12; and

3

`

+ 1�

p

3 � 3

`

when ` = �5 mod 12:

The 
urve E

�

de�ned by y

2

= x

3

+ 2x� 1 over F

3

satis�es

jE

�

(F

3

`

)j =

(

3

`

+ 1�

p

3 � 3

`

when ` = �1 mod 12; and

3

`

+ 1 +

p

3 � 3

`

when ` = �5 mod 12:

Proof. See [28, se
tion 2℄.

Lemma 4.4. Let E be an ellipti
 
urve de�ned by y

2

= x

3

+2x�1 over F

3

`

, where ` mod 12 equals

�1 or �5. Then jE(F

3

`

)j divides 3

6`

� 1.

Proof. See [47℄.

Together, Lemmas 4.3 and 4.4 show that, for the relevant values of `, groups on the 
urves

E

+

=F

3

`

and E

�

=F

3

`

will have se
urity multiplier � at most 6 (more spe
i�
ally: � j 6). Whether

the se
urity parameter a
tually is 6 for a parti
ular prime subgroup of a 
urve must be determined

by 
omputation.

Automorphism of E

+

; E

�

=F

3

6`

: Both 
urves E

+

and E

�

have a useful automorphism that

make the prime-order subgroups of E

+

(F

3

`

) and E

�

(F

3

`

) into GDH groups (as opposed to 
o-GDH

groups). This fa
t 
an be used to shrink the size of the publi
 key sin
e it makes it possible for for

the publi
 key to live in E(F

3

`

) as opposed to E(F

3

6`

).

The automorphism is de�ned as follows. For ` su
h that ` mod 12 is �1 or �5, 
ompute three

elements of F

3

6`

, u, r

+

, and r

�

, satisfying u

2

= �1; (r

+

)

3

+2r

+

+ 2 = 0, and (r

�

)

3

+2r

�

� 2 = 0.

Now 
onsider the following maps over F

3

6`

:

�

+

(x; y) = (�x+ r

+

; uy) and �

�

(x; y) = (�x+ r

�

; uy):

Lemma 4.5. Let ` mod 12 equal �1 or �5. Then �

+

is an automorphism of E

+

=F

3

6`

and �

�

is an automorphism of E

�

=F

3

6`

. Moreover, if P is a point of order p on E

+

=F

3

`

(or on E

�

=F

3

`

)

then �

+

(P ) (or �

�

(P )) is a point of order p that is linearly independent of P .

Proof. See Silverman [44, p. 326℄.

Let E=F

3

`

be one of E

+

or E

�

and let P 2 E(F

3

`

) be a point of prime order p. Set G

1

= hP i,

the group generated by P . Let � : E(F

3

`

)! E(F

3

6`

) be the automorphism of the 
urve from above.

De�ne the modi�ed Weil pairing ê : G

1

� G

1

! F

�

3

6`

as follows: ê(P

1

; P

2

) = e(P

1

; �(P

2

)) where e

is the standard Weil pairing on E[p℄. By Lemma 4.5 we know that �(P ) is linearly independent of

P . Therefore, ê is non-degenerate. It follows that G

1

is a GDH group. This has two impli
ations

for the signature s
heme:

� Se
urity of the signature s
heme is based on the diÆ
ulty of the standard Computational

DiÆe-Hellman problem in G

1

(as opposed to the 
o-CDH problem).

� Publi
 keys are elements of G

1

and, hen
e, are shorter than publi
 keys should the automor-

phism not exist.
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urve l Sig Size DLog Se
urity MOV Se
urity

dlog

2

3

`

e dlog

2

pe d6 log

2

3

`

e

E

�

79 126 126 752

E

+

97 154 151 923

E

+

121 192 155 1151

E

+

149 237 220 1417

E

+

163 259 256 1551

E

�

163 259 259 1551

E

+

167 265 262 1589

Table 2: Supersingular ellipti
 
urves for GDH signatures. Here p is the largest prime divisor of

jE(F

3

`

)j. The MOV redu
tion maps the 
urve onto a �eld of 
hara
teristi
 3 of size 3

6`

.

Useful 
urves. Some useful instantiations of these 
urves are presented in Table 2. Note that

we restri
t these instantiations to those where ` is prime, to avoid Weil-des
ent atta
ks [21, 22℄,

ex
ept for ` = 121. It has re
ently been shown that 
ertain Weil-des
ent atta
ks are not e�e
tive

for this 
ase [17℄, suggesting that it may be safe to use.

Performan
e. Galbraith et al. [20℄ and Baretto et al. [4℄ show that the Frobenius map on the


urves E

+

; E

�


an be used to speed the 
omputation of the Weil and Tate pairings on these


urves. This results in a signi�
ant speed-up to the signature-veri�
ation algorithm. Consequently,

the signature s
heme using these 
urves is mu
h faster than the s
heme using the 
urves from the

previous se
tion.

The bad news. MOV redu
es the dis
rete log problem on E

+

(F

3

`

) and E

�

(F

3

`

) to a dis
rete

log problem in F

�

3

6`

. A dis
rete-log algorithm due to Coppersmith [14, 43℄ is spe
i�
ally designed

to 
ompute dis
rete log in small 
hara
teristi
 �elds. Consequently, a dis
rete-log problem in F

�

3

n

is mu
h easier than a dis
rete-log problem in F

�

p

where p is a prime of approximately the same size

as 3

n

. To get se
urity equivalent to DSA using a 1024-bit prime, we would have to use a 
urve

E(F

3

`

) where 3

6`

is mu
h larger than 1024 bits. This leads to mu
h longer signatures, defeating

the point of using these 
urves. In other words, for a �xed signature length, these supsersingular


urves lead to a signature with redu
ed se
urity 
ompared to the 
urves of the previous se
tion.

4.5 An open problem: higher se
urity multipliers

With the 
urves of Se
tion 4.3, a se
urity multiplier of � = 6 is suÆ
ient for 
onstru
ting short

signatures with se
urity 
omparable to DSA using a 1024-bit prime. However, to obtain se
urity


omparable to DSA using a 2048-bit prime with � = 6 we get signatures of length 2048=6 = 342

bits. Ellipti
 
urves with higher �, say � = 10, would result in short signatures when higher se
urity

is needed (su
h as 2048-bit dis
rete-log se
urity).

Let q be a large prime power, say, q > 2

160

. It is 
urrently an open problem to 
onstru
t an

ellipti
 
urve E=F

q

su
h that E(F

q

) has � = 10 and E(F

q

) has prime order. Baretto et al. [5℄

show how to build ellipti
 
urves E su
h that E(F

q

) has a given se
urity multipliers �. However,

the largest prime order subgroup of E(F

q

) is mu
h smaller than q. Consequently, these 
urves


annot be used for se
ure short signatures|a generi
 dis
rete-log algorithm in E(F

q

) will break

the s
heme in time proportional to

p

p where p is the largest prime fa
tor of jE(F

q

)j.
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One 
ould also build GDH groups of higher genus. Galbraith [19℄ 
onstru
ts supersingular 
urves

of higher genus with a \large" se
urity multiplier. For example, the Ja
obian of the supersingular


urve y

2

+ y = x

5

+ x

3

has se
urity multiplier 12 over F

2

`

. Sin
e a point on the Ja
obian of this


urve of genus two is 
hara
terized by two values in F

2

`

(the two x-
oordinates in a redu
ed divisor),

the length of the signature is 2` bits. Hen
e, we might obtain a signature of length 2` with se
urity

of 
omputing CDH in the �nite �eld F

2

12`

. This fa
tor of 6 between the length of the signature

and the degree of the �nite �eld is the same as in the ellipti
 
urve 
ase. Hen
e, this genus 2


urve does not improve the se
urity of the signature, but does give more variety in 
urves used for

short signatures. Dis
rete log on the Ja
obian of these 
urves is redu
ible to dis
rete-log in a �eld

of 
hara
teristi
 2 and 
onsequently one must take Coppersmith's dis
rete log algorithm [14℄ into

a

ount, as dis
ussed at the end of Se
tion 4.4.

To obtain larger se
urity multipliers, Rubin and Silverberg [42℄ propose 
ertain Abelian varieties.

Super�
ially, they show that signatures produ
ed using the 
urve of Se
tion 4.4 
an be shortened

by 20%. The result is an n-bit signature where the pairing redu
es the dis
rete log problem to a

�nite �eld of size approximately 2

7:5n

. This is the only useful example we 
urrently know of where

the multiplier is greater than 6.

5 Extensions

Our signatures support threshold signatures and bat
h veri�
ation. Surprisingly, signatures from

distin
t people on distin
t messages 
an be aggregated into a single 
onvin
ing signature. We

brie
y survey these extensions here and refer to Boldyreva [9℄, Verheul [46℄, and Boneh et al. [11℄

for a full des
ription and proofs of se
urity.

5.1 Aggregate signatures

Common environments require managing many signatures by di�erent parties on distin
t messages.

For example, 
erti�
ate 
hains 
ontain signatures on distin
t 
erti�
ates issued by various Certi�-


ate Authorities. Our signature s
heme enables us to aggregate multiple signatures by distin
t

entities on distin
t messages into a single short signature. Any party that has all the signatures


an aggregate signatures, and aggregation 
an be done in
rementally: Two signatures are aggre-

gated, then a third is added to the aggregate, and so on. See [11℄ for more appli
ations.

Let (G

1

; G

2

) be a bilinear group pair of prime order p. Suppose n users ea
h have a publi
-

private key pair. For i = 1; : : : ; n, user i has private key x

i

2 Z

p

and publi
 key v

i

= g

x

i

2

2 G

2

.

Suppose user i signs a message M

i

2 f0; 1g

�

to obtain the signature �

i

= H(M

i

)

x

i

2 G

1

. The

aggregate of all these signatures is 
omputed simply as �  �

1

�

2

� � � �

n

2 G

1

.

Aggregate veri�
ation: We are given all publi
 keys v

1

; : : : ; v

n

2 G

2

, all messages M

1

; : : : ;M

n

2

f0; 1g

�

, and the aggregate signature � 2 G

1

. To verify that, for all i = 1; : : : ; n, user i has signed

message M

i

, we test that

1. The messages M

1

; : : : ;M

n

are all distin
t, and

2. e(�; g

2

) =

Q

n

i=1

e(H(M

i

); v

i

).

If both 
onditions hold, we a

ept the aggregate signature. Otherwise, we reje
t.

We refer to [11℄ for the exa
t se
urity model and the proof of se
urity. An atta
ker who 
an

existentially forge an aggregate signature 
an be subverted to solve 
o-CDH on (G

1

; G

2

). We note

that aggregate signature veri�
ation requires a bilinear map|a generi
 Gap DiÆe-Hellman group

is apparently insuÆ
ient. Generi
 Gap DiÆe-Hellman groups are suÆ
ient for verifying aggregate
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signatures on the same message by di�erent people, or for verifying aggregate signatures on distin
t

messages by the same person.

5.2 Bat
h veri�
ation

Suppose n users all sign the same message M 2 f0; 1g

�

. We obtain n signatures �

1

; : : : ; �

n

. We

show that these n signatures 
an be veri�ed as a bat
h mu
h faster than verifying them one by

one. A similar property holds for other signature s
hemes [6℄.

Let (G

1

; G

2

) be a 
o-GDH group pair of prime order p. Suppose user i's private key is x

i

2 Z

p

and his publi
 key is v

i

= g

x

i

2

2 G

2

. Signature �

i

is �

i

= H(M)

x

i

2 G

1

. To verify the n signatures

as a bat
h we use a te
hnique due to Bellare et al. [6℄:

1. Pi
k random integers 


1

; : : : ; 


n

from the range [0; B℄ for some value B. This B 
ontrols the

error probability as dis
ussed below.

2. Compute V  

Q

n

i=1

v




i

i

2 G

2

and U  

Q

n

i=1

�




i

i

2 G

1

.

3. Test that (g

2

; V;H(M); U) is a 
o-DDH tuple. A

ept all n signatures if so; reje
t otherwise.

Theorem 3.3 of [6℄ shows that we in
orre
tly a

ept the n signatures with probability at most

1=B. Hen
e, verifying the n signatures as a bat
h is faster than verifying them one by one. Note

that if all signers are required to prove knowledge of their private keys, then taking 


1

= : : : = 


n

= 1

is suÆ
ient, yielding even faster bat
h veri�
ation [9℄. A similar bat
h veri�
ation pro
edure 
an

be used to verify qui
kly n signatures on distin
t messages issued by the same publi
 key.

5.3 Threshold signatures

Using standard se
ret sharing te
hniques [33℄, our signature s
heme gives an immediate robust

t-out-of-n threshold signature [9℄. In a threshold signature s
heme, there are n parties where ea
h

possesses a share of a private key. Ea
h party 
an use its share of the private key to produ
e a

share of a signature on some message M . A 
omplete signature on M 
an only be 
onstru
ted if

at least t shares of the signature are available.

A robust t-out-of-n threshold signature s
heme derives from our signature s
heme as follows. A


entral authority generates a publi
/private key pair. Let x 2 Z

p

be the private key and v = g

x

2

2 G

2

be the publi
 key. The 
entral authority pi
ks a random degree t � 1 polynomial ! 2 Z

p

[X℄ su
h

that !(0) = x. For i = 1; : : : ; n, the authority gives user i the value x

i

= !(i), its share of the

private key. The authority publishes the publi
 key v and n values u

i

= g

x

i

2

2 G

2

.

When a signature a on a message M 2 f0; 1g

�

is needed ea
h party that wishes to parti
ipate

in signature generation publishes its share of the signature as �

i

= H(M)

x

i

2 G

1

. Without loss of

generality, assume users 1; : : : ; t parti
ipate and generate shares �

1

; : : : ; �

t

. Anyone 
an verify that

share �

i

is valid by 
he
king that (g

2

; u

i

;H(M); �

i

) is a 
o-DiÆe-Hellman tuple. When all t shares

are valid, the 
omplete signature is re
overed as

�  

t

Y

i=1

�

�

i

i

where �

i

=

Q

t

i=1;j 6=i

(0� j)

Q

t

i=1;j 6=i

(i� j)

(mod p):

If fewer than t users are able to generate a signature on some message M then these users 
an

be used to solve 
o-CDH on (G

1

; G

2

) [9℄. This threshold s
heme is robust: A parti
ipant who


ontributes a bad partial signature �

i

will be dete
ted immediately sin
e (g

2

; u

i

;H(M); �

i

) will not

be a 
o-DiÆe-Hellman tuple.

We note that there is no need for a trusted third party to generate shares of the private key.

The n users 
an generate shares of the private key without the help of a trusted third party using

the proto
ol due to Gennaro et al. [23℄.
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6 Con
lusions

We presented a short signature based on bilinear maps on ellipti
 
urves. A signature is only one

element in a �nite �eld. Standard signatures based on dis
rete log su
h as DSA require two elements.

Our signatures are mu
h shorter than all 
urrent variants of DSA for the same se
urity. We showed

that the s
heme is existentially unforgeable under a 
hosen message atta
k (in the random ora
le

model) assuming the Computational DiÆe-Hellman problem is hard in 
ertain ellipti
-
urve groups.

More generally, the signature s
heme 
an be instantiated on any Gap DiÆe-Hellman group or 
o-

GDH group pair.

We presented two families of ellipti
 
urves that are suitable for obtaining short signatures. The

�rst, based on [36℄, is a family of non-supersingular 
urves over a prime �nite �eld. The se
ond uses

supersingular 
urves over F

3

`

. Both families of 
urves produ
e n-bit signatures and the dis
rete log

problem on these 
urves is redu
ible to a dis
rete log problem in a �nite �eld of size approximately

2

6n

. Hen
e, for 1024-bit se
urity we get signatures of size 1024=6 = 171 bits.

We expe
t that the �rst family of 
urves (the non-supersingular 
urves) will be the one used for

short signatures: 171-bit signatures with 1024-bit se
urity. As dis
ussed at the end of Se
tion 4.4,

the se
ond family of 
urves (the supersingular 
urve over F

3

`

) should not be used for short signa-

tures. The problem is that dis
rete log on these 
urves redu
es to a dis
rete log in a �nite �eld of


hara
teristi
 3 where Coppersmith's algorithm 
an be used.

Implementation results [20, 4℄ indi
ate that the signature s
heme performs well. Signature

generation is just a simple multipli
ation on an ellipti
 
urve and is faster than RSA signature

generation. Veri�
ation requires two 
omputations of the bilinear map and is slower than RSA

signature veri�
ation.

In Se
tion 4.5 we outlined an open problem that would enable us to get even better se
urity

while maintaining the same length signatures. We hope future work on 
onstru
ting ellipti
 
urves

or higher genus 
urves will help in solving this problem.
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